Efficient numerical solution of discrete multi-component Cahn-Hilliard systems

نویسندگان

  • Petia T. Boyanova
  • Maya Neytcheva
چکیده

In this work we develop preconditioners for the iterative solution of the large scale algebraic systems, arising in finite element discretizations of microstructures with an arbitrary number of components, described by the diffusive interface model. The suggested numerical techniques are applied to the study of ternary fluid flow processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Energy Stable Schemes with Spectral Discretization in Space for Anisotropic Cahn–hilliard Systems

We develop in this paper efficient and robust numerical methods for solving anisotropic Cahn–Hilliard systems. We construct energy stable schemes for the time discretization of the highly nonlinear anisotropic Cahn-Hilliard systems by using a stabilization technique. At each time step, these schemes lead to a sequence of linear coupled elliptic equations with constant coefficients which can be ...

متن کامل

Energy Stable Schemes for Cahn-Hilliard Phase-Field Model of Two-Phase Incompressible Flows∗∗∗

Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper. Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed, and are shown to satisfy discrete energy laws which are analogou...

متن کامل

The Fourier spectral method for the Cahn-Hilliard equation

In this paper, a Fourier spectral method for numerically solving Cahn-Hilliard equation with periodic boundary conditions is developed. We establish their semi-discrete and fully discrete schemes that inherit the energy dissipation property and mass conservation property from the associated continuous problem. we prove existence and uniqueness of the numerical solution and derive the optimal er...

متن کامل

Numerical Approximations for a Three Components Cahn-hilliard Phase-field Model Based on the Invariant Energy Quadratization Method

How to develop efficient numerical schemes while preserving the energy stability at the discrete level is a challenging issue for the three component Cahn-Hilliard phase-field model. In this paper, we develop first and second order temporal approximation schemes based on the “Invariant Energy Quadratization” approach, where all nonlinear terms are treated semi-explicitly. Consequently, the resu...

متن کامل

On Fully Practical Finite Element Approximations of Degenerate Cahn-hilliard Systems

We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2014